
Shelled! A Postmortem – By Gary Preston
“Shelled! is an artillery combat game in full 3D that allows up to
8 on-line players to blow each other to bits! Fire a variety of
earth-moving explosive turtle shells including nukes, spreads, and
more! With classic Scorched Earth inspired game play” -
www.shelledgame.com

RedThumbGames began development of Shelled! in January 2005, I joined the team roughly four
months in with Shelled! not only being my first TGE based project but also the first real game I'd
worked on. The prospect of getting my teeth into a real project was both exciting and at the same
time very daunting.

THE TECH

Shelled! was developed using the Torque Game Engine (TGE).
For those not familiar with TGE, it's a C++ based engine (some
Asm) along with a custom scripting language known simply as
"Torque Script".

Torque Script takes a little getting used to, not in terms of its
language which is very C like and easy to pickup, but its tight
integration with the engine. This integration turns out to also be
one of its strengths, if your game were a house, the engine would
be the bricks and Torque Script the mortar that holds everything
together, the vast majority of our game play logic was script
based.

The script code runs several times slower than C++ code despite
being compiled to byte code on first use, thus first reactions would
be to bypass it and code everything in the engine. This would be a
mistake, the productivity gain scripting brings should not be
underestimated. It's quite surprising just how much you can script
without any noticeable performance impact, besides, it's always
possible to move the more demanding script code into the engine
during an optimization phase.

That isn't to say Torque Script is perfect, I'm sure most people that
have worked with it could come up with a list of extra features
they'd like to see, then again you could say that about any
engine/development environment.

A few months after joining the Shelled! team I was made aware of Torsion, an IDE created for
editing and debugging Torque Script by SickHead Games. Without doubt productivity increased
considerably. For debugging ease alone, I'd strongly recommend that anyone working with Torque
Script evaluates Torsion.

www.shelledgame.com 1 / 8

Pods of war concept - Shelved

http://www.shelledgame.com/

It really goes without saying how critical source control is for any project especially those done
remotely. We used CVS for most of the project switching to SVN nearer the end.

During the last few months of the project we also setup Mantis for logging all reported bugs from
the latest beta test. In hindsight we should have had mantis up and running from the start. The effort
in co-ordinating who was fixing which bug and whether a bug had been fixed or not was greatly
reduced. It did take a little more time up front to get bugs logged, but the later time savings were
more than worth it, even more so if your project team is split across several timezones.

WHAT WENT WRONG

OUT FEATURE THE COMPETITION

From the off Shelled! had a clear goal, to recreate the fun factor of the classic Scorched Earth game
in 3D with simple controls and game play. Early on we lost sight of that goal.

Several months into development the game had
it all, flying tanks, deformable terrain, loads of
weapons, various planets sporting different
gravity levels, tank power ups and a wind
system that would occasionally change direction
and affect shell trajectories, to mention but a
few. What we didn't have, was accessible game
play.

The game was too cumbersome, it had too many
options, the number of clicks needed to go from
loading the game to actually firing your first in
shell in anger was bordering on the insane.
Selecting a level required setting min/max bot skill level, min/max wind speeds, fixed or varied
wind direction, planet gravity, terrain type, allowed weapons, points/money for kills and a host of
other options that whilst some may find useful, for the majority it was just over whelming.

Looking back it was hardly surprising the early versions of the game met with an amount of
criticism during the first public viewing. In short order the game was ripped apart and just about
every major feature ripped out and game controls overhauled. The user interface was stripped and
reduced to a fixed set of simple options. Now the user could get from main menu into an actual
game in just a few clicks.

LEARNING CURVE

TGE is a sizable chunk of code, the learning curve of which is fairly steep. This steep learning
curve was compounded by my initial mindset of wanting to understand how everything worked
before making changes. This is probably due to my Information Systems background, where
significant time was often spent understanding new systems before any changes were made.

With an engine like TGE this wasn't feasible. Not only due to the sheer amount of code, but also
because understanding much of the code requires that you already have a grasp of several concepts
unique to the game domain.

Once I'd shaken off the need to understand everything and instead focused on only code in the
immediate area of concern, I found my overall knowledge of the engine increased at a greater pace.

www.shelledgame.com 2 / 8

Scorched Earth - Inspiration for Shelled!

http://www.shelledgame.com/

CODE WHAT YOU NEED, NOT WHAT YOU THINK YOU MIGHT

A few times whilst adding support for a specific feature I would catch myself over analyzing what
was needed and looking for a "perfect" solution that not only supported the current task but also
allowed easy expansion in the future. On the surface this isn't a bad thing to do and in moderation
can be very useful. However, when you try to be too flexible or always look for the "best" way to do
something, you can end up spending
hours/days longer adding a feature
that will also support XYZ only to
find you never needed X let alone Y or
Z. All that extra time making it
flexible was for naught and the extra
fluff may have reduced the readability
of the code. Even worse, you may find
the feature gets cut a few months
down the line.

Coding only “what you need” became
an important lesson for me and
fortunately one I learned very early on
in the project. Should a feature later
be required, then, at that time and not
before, re-factor and add the new
feature. In pretty much every case the
flexibility I thought we might need
later was never the case and in most
cases features were later scaled back or dropped.

USABILITY TESTING

We left it quite late in the project before opening the game to a wider audience of testers. By which
time a number of features had been fully implemented and final artwork put in place. Only to then
discover the intended target audience for the game were overwhelmed by the amount of options and
general control scheme.

High quality artwork was thrown out and the theme changed to a more cartoon style, but the
changes didn't end there. Feature after feature found itself mercilessly cut, some of which had taken
considerable time to implement over the previous months.

This kind of design change can be minimized by prototyping up front (lesson learned) however
even with prototyping, games are creative works and will under go changes throughout the
development life cycle. Features may be dropped due to feedback from testers or cut due to
budget/time constraints.

Such a major change in direction so far into development was a hard to do, but once the dust settled
and newer “cartoon” style artwork was in place, Josh's decision was vindicated and the game really
started to finally come together. Had we not followed the "CODE WHAT YOU NEED" rule, this
cutting of features would have been all the more painful.

In hindsight we should have prototyped the main features of the game and done a wider form of
testing with people from the target market rather than relying on our own opinions.

www.shelledgame.com 3 / 8

Custom Options - Cut

http://www.shelledgame.com/

CROSS PLATFORM SUPPORT

TGE is a cross platform engine that works on Windows,
MacOS and various flavors of Linux. In the early days of
development, Shelled! compiled and ran on all three.
However it wasn't long before development focused
entirely on Windows with the intention of bringing
Mac/Linux up to date at a later time. As development
neared an end, we had a game that no longer compiled let
alone ran on the Mac nor Linux. Bringing the game up to
date on those platforms probably wouldn't have taken too
long, but it was time we no longer had.

In hindsight we would have been better off keeping Mac
and Linux builds up to date either after each feature change
or at regular milestones. The time it would take to resolve
issues just after a feature change whilst the changes were
still fresh would probably have been lower than the time it
was going to take to resolve everything a year or two later
at the projects end.

In addition testing of new features could have been
completed on each OS throughout development, by the end
of the project even if we ported the game to the Mac and
Linux we'd have been left with a sizable amount of feature
testing to do. Any major platform bugs would have then
caused a significant delay, where as the same bugs found
during development could have been resolved by bringing
in a Mac/Linux programmer to work in parallel.

As a result, Shelled! has only been released on the Windows Platform.

www.shelledgame.com 4 / 8

Original Armory and tank power-ups
Later reduced to 9 shells

Early Sci-Fi Themed Build - Cut

http://www.shelledgame.com/

AI

I guess this doesn't really belong in the "what went wrong" category, more in the, "if we had more
time" category.

With the main emphasis on network play the
AI took a bit of a back seat. This becomes
quite evident in that the AI will only ever
make use of the default shell type. They're
incapable of purchasing and making the
decision as to when to use different shell
types.

Artificial Intelligence is a fascinating subject
with a number of techniques that would have
been worth investigating for use in Shelled!,
time however was not on our side.

NETWORKING

Shelled! is mainly a multi player game and
unfortunately one key problem is the
requirement of users to have ports open before
their "hosted" game will appear on the master
server. Although many AAA games have this
problem, they also have such a large pool of
players that its almost a given that a sufficient
proportion will know how to forward a few
ports to let them run their own servers.

Unless your game is aimed at hardcore gamers we cannot assume this level of technical knowledge.
There will of course be exceptions, but can we count on that? One potential problem being players
download the game, click on-line play and see no servers, so they click host and sit playing the AI
for a while then decide nobody else is going to join them and quit. It could be that a number of other
players were doing the exact same thing and yet none of them were aware of each other.

This could be addressed through running a few dedicated servers but ideally we should removing
the need for the end user to worry about port forwarding at all. With UDP packets and the co-
operation of a master server, it's possible to traverse firewalls and NAT'd connections. Several
methods are available but we didn't have the time needed to investigate and implement any. I
believe TNL has an implementation (used by ZAP!?) a feature that would make a worth while
addition to TGE for future projects.

www.shelledgame.com 5 / 8

Mech Pilot for game victory celebrations - Cut

http://www.shelledgame.com/

WHAT WENT RIGHT

COMMUNICATION

Communication on remote projects is problematic at the best of times, but add to that an 8 hour
timezone difference and incompatible working hours making real-time communication impossible
within any kind of reasonable hour and the potential for problems increases.

The alternative, Email and IRC. This wasn't as bad as it sounds, we had a paper trail of feature
requests and bugs fixes, in addition feature requests were clear and concise which greatly reduced
the chance of differing interpretations.

FAKING IT

The initial implementation of the Tanks and Jets
attempted to model forces such as jet thrust, wind,
gravity and surface friction amongst others. It
quickly became apparent that implementing
"realistic" physics (as realistic as flying, nuke
wielding turtles can be anyway ;) was simply
getting in the way of the game play.

A few people have commented that they liked the
physics in Shelled! and yet under the hood they're
very unrealistic. Aside from simulations, accurate
physics are not that important so long as the
implementation "feels" good it shouldn't matter
whether you have a cool rigid body simulation
that takes into account thrust/mass/gravity or
simply a set of fudged numbers.

One example of this is the initiation of flight, the original jet thrust gradually accelerates the tank
upwards. However, in the final build we went instead for an instantaneous velocity followed by a
gradual acceleration that tapered off quickly. This was done to allow tanks to exit craters quickly yet
limit the final height they could achieve.

Another area where game play came before reality was the way tanks conform, or more specifically
do not conform to the terrain. This was done for two reasons. First, having a fixed level platform
made the AI trajectory calculations easier. Second, and of greater importance. The concept of
"trajectory" based game play, getting players to aim above a target rather than directly at it, was
already a hard sell for our main audience of players. We'd have only complicated matters if tanks
could come to a rest angled against a cliff face and the player suddenly found themselves having to
move left/right rather than up/down aim higher or lower.

We didn't want to be "too" apparent that we'd taken this approach and landing a tank on the top of a
spire made it obvious that we'd faked it. Again we fudged it, instead of tumbling off the spire we
applied a small force in the direction of the largest overhang to push the tank clear. Accurate, no,
but it did the trick.

www.shelledgame.com 6 / 8

Flying Tank - Final Build

http://www.shelledgame.com/

COMMUNITY RESOURCES

These were a mixed bag. On the one hand, we saved quite a substantial amount of time and effort
by leveraging the work of the community, however, we also lost time tracking down and fixing
various bugs in the resources, many of which went unnoticed for some time. In several cases the
resources were later removed in favor of custom code. Although we still saved time by initially
using resources to quickly test a concept and as a basis for more customized code.

Notable exceptions that remained in the final build were resources such as Ben Garney's
Commander Map and Stephan Zepp's terrain deformation code both of which saved us a great deal
of research and implementation time.
Neither resource remained untouched
however, we made substantial changes to
the terrain deformation code to tailor it to
our needs. Such as ensuring any objects in
the vicinity had their cached collision sets
invalidated to ensure they fell into craters.
We also added a crater impact texture and
abused the "updateGridMaterials" code to
play nicely with tiled terrain.

The Garage Games community as a whole
are a great asset to the Torque Game
Engine. Both in terms of supporting each
other through forums and IRC as well as taking the time to produce resources, which, when
carefully selected can greatly aid development.

JOURNALING

Once again the choice of engine paid dividends. TGE has the ability to record and play back demos
of your game to help remind other gamers of how you gracefully nuked them out of existence,
however, a less commonly used feature is journaling.

Journaling records all the input the game receives whilst running allowing a game session to be
replayed again at a later time, but unlike a demo, you can replay the session from within your
favorite debugger. If beta testers are having strange crash bugs that you can't reproduce, make them
play the game with journaling enabled and send you the resulting file. Fire up visual studio and
replay the journal in debug mode, go make a coffee and when you come back the debugger should
have broken out just before the event that causes the crash to occur.

Journaling helped track down several major bugs within Shelled! Although we never needed beta
testers to send in a journal file, the option was there and would also help remove any ambiguities
that an emailed bug report could contain.

www.shelledgame.com 7 / 8

Enemy Mech Tank - Cut

http://www.shelledgame.com/

NETWORKING

Using Torque allowed us to make full use of its great networking support. There were a few teething
problems but these were more down to inexperience with the networking side of the engine. We
also spent a little time testing Shelled under fairly high packet loss and latency's of up to 200-
350ms, with only one exception, the game still played well. The exception being the purchase
screen which was re-written to use client side predication based on the clients last confirmed Cash
amount.

CLOSING THOUGHTS

When things go wrong, you find yourself having to work even harder to solve the problem. That
extra effort tends to make those events easier to recall. I believe this is why a lot more appears to
have gone wrong with the project than right. In reality the two were probably well balanced,
mistakes are just easier to remember.

What I personally took home from the project (aside from a neat Shelled! branded mug) was a
deeper understanding of the engine as well as a greater appreciation for what goes into making a
complete game, although I still feel like I've only scratched the surface of TGE in many areas.
Perhaps most importantly, I've realized just how much I didn't know I didn't know about game
making ;)

Did we manage to make a fun game? I think we did. The final decision is of course up to the
players, head on over to www.shelledgame.com and give the game a whirl.

Gary Preston
Lead Programmer
gary@figmentgames.com

PROJECT VITALS

Development software: 3D Studio Max, Visual Studio.net 2003, Subversion, Mantis, Torsion
Engine Used: Torque Game Engine
Development Hardware: 2.8GHz HT P4, 1Gig Ram, 256Meg GF6800
Release Platform: Windows

Programmers: 1-2
Artists: 1
Release Date: 14th November 2006

Free Download: http://www.shelledgame.com

VGCore Score: 8.8 / 10
VGCore Review: http://pc.vgcore.com/reviews/445.html
Game Tunnel: http://www.gametunnel.com/gamespace.php?id=306

www.shelledgame.com 8 / 8

http://www.shelledgame.com/
http://pc.vgcore.com/reviews/445.html
http://www.shelledgame.com/
mailto:gary@figmentgames.com
http://www.shelledgame.com/

	Shelled! A Postmortem – By Gary Preston
	THE TECH
	WHAT WENT WRONG
	OUT FEATURE THE COMPETITION
	LEARNING CURVE
	CODE WHAT YOU NEED, NOT WHAT YOU THINK YOU MIGHT
	USABILITY TESTING
	CROSS PLATFORM SUPPORT
	AI
	NETWORKING
	WHAT WENT RIGHT
	COMMUNICATION

	FAKING IT
	COMMUNITY RESOURCES
	JOURNALING
	NETWORKING
	CLOSING THOUGHTS
	PROJECT VITALS

